Tham khảo Hàm số bậc ba

  1. Høyrup, Jens (1992), “The Babylonian Cellar Text BM 85200 + VAT 6599 Retranslation and Analysis”, Amphora: Festschrift for Hans Wussing on the Occasion of his 65th Birthday, Birkhäuser, tr. 315–358, ISBN 978-3-0348-8599-7, doi:10.1007/978-3-0348-8599-7_16 
  2. 1 2 Crossley, John; W.-C. Lun, Anthony (1999). The Nine Chapters on the Mathematical Art: Companion and Commentary. Oxford University Press. tr. 176. ISBN 978-0-19-853936-0
  3. 1 2 Van der Waerden, Geometry and Algebra of Ancient Civilizations, chapter 4, Zurich 1983 ISBN 0-387-12159-5
  4. Cooke, Roger (ngày 8 tháng 11 năm 2012). The History of Mathematics. John Wiley & Sons. tr. 63. ISBN 978-1-118-46029-0
  5. Nemet-Nejat, Karen Rhea (1998). Daily Life in Ancient Mesopotamia. Greenwood Publishing Group. tr. 306. ISBN 978-0-313-29497-6
  6. Cooke, Roger (2008). Classical Algebra: Its Nature, Origins, and Uses. John Wiley & Sons. tr. 64. ISBN 978-0-470-27797-3
  7. Guilbeau (1930, tr. 8) states that "the Egyptians considered the solution impossible, but the Greeks came nearer to a solution."
  8. 1 2 Guilbeau (1930, tr. 8–9)
  9. Heath, Thomas L. (ngày 30 tháng 4 năm 2009). Diophantus of Alexandria: A Study in the History of Greek Algebra. Martino Pub. tr. 87–91. ISBN 978-1578987542
  10. Archimedes (ngày 8 tháng 10 năm 2007). The works of Archimedes. Translation by T. L. Heath. Rough Draft Printing. ISBN 978-1603860512
  11. Mikami, Yoshio (1974) [1913], “Chapter 8 Wang Hsiao-Tung and Cubic Equations”, The Development of Mathematics in China and Japan (ấn bản 2), New York: Chelsea Publishing Co., tr. 53–56, ISBN 978-0-8284-0149-4 
  12. A paper of Omar Khayyam, Scripta Math. 26 (1963), pages 323–337
  13. In O'Connor, John J.; Robertson, Edmund F., “Omar Khayyam”, Dữ liệu Lịch sử Toán học MacTutor, Đại học St. Andrews  one may read This problem in turn led Khayyam to solve the cubic equation x3 + 200x = 20x2 + 2000 and he found a positive root of this cubic by considering the intersection of a rectangular hyperbola and a circle. An approximate numerical solution was then found by interpolation in trigonometric tables. The then in the last assertion is erroneous and should, at least, be replaced by also. The geometric construction was perfectly suitable for Omar Khayyam, as it occurs for solving a problem of geometric construction. At the end of his article he says only that, for this geometrical problem, if approximations are sufficient, then a simpler solution may be obtained by consulting trigonometric tables. Textually: If the seeker is satisfied with an estimate, it is up to him to look into the table of chords of Almagest, or the table of sines and versed sines of Mothmed Observatory. This is followed by a short description of this alternate method (seven lines).
  14. J. J. O'Connor and E. F. Robertson (1999), Omar Khayyam, MacTutor History of Mathematics archive, states, "Khayyam himself seems to have been the first to conceive a general theory of cubic equations."
  15. Guilbeau (1930, tr. 9) states, "Omar Al Hay of Chorassan, about 1079 AD did most to elevate to a method the solution of the algebraic equations by intersecting conics."
  16. Datta, Bibhutibhushan; Singh, Avadhesh Narayan (2004), “Equation of Higher Degree”, History of Hindu Mathematics: A Source Book 2, Delhi, India: Bharattya Kala Prakashan, tr. 76, ISBN 81-86050-86-8 
  17. O'Connor, John J.; Robertson, Edmund F., “Sharaf al-Din al-Muzaffar al-Tusi”, Dữ liệu Lịch sử Toán học MacTutor, Đại học St. Andrews 
  18. Berggren, J. L. (1990), “Innovation and Tradition in Sharaf al-Dīn al-Ṭūsī's Muʿādalāt”, Journal of the American Oriental Society 110 (2): 304–309, JSTOR 604533, doi:10.2307/604533 
  19. R. N. Knott and the Plus Team (ngày 4 tháng 11 năm 2013), “The life and numbers of Fibonacci”, Plus Magazine 
  20. Tony Rothman, Cardano v Tartaglia: The Great Feud Goes Supernatural.
  21. Katz, Victor (2004). A History of Mathematics. Boston: Addison Wesley. tr. 220. ISBN 9780321016188